Structural Origin of Holes in the TI–O Single Rock-Salt Layer Superconductor TISrRCuO₅ (R = La, Nd)

M.-H. WHANGBO

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

AND M. A. SUBRAMANIAN

Central Research and Development, E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, Delaware 19880-0262

Communicated by J. M. Honig, January 23, 1991

On the basis of tight-binding band electronic structure calculations, we examined why TISrRCuO₅ (R = La, Nd) is a superconductor while its analog TIBaRCuO₅ and its homolog TISrRCaCu₂O₇ are not. Our study strongly suggests that, for a TI-O single rock-salt layer phase with very short in-plane Cu-O distance such as TISrRCuO₅, the CuO₂ layer x^2-y^2 band is raised high enough in energy for the TI-O layer to create holes in the CuO₂ layer. (1991) Academic Press, Inc.

The presence of holes in CuO_2 layers is essential for superconductivity in p-type cuprate superconductors (1-5). These cuprates are divided into three classes, based on the cations occupying the 9-coordination sites adjacent to the CuO_2 layers (5, 6). To first approximation, the superconducting critical temperature T_c of every class is represented by an inverted parabolic function of the hole density of the CuO_2 layer (5, 7). Holes are generated in the CuO₂ layer (i.e., the average formal oxidation state of copper is increased beyond +2) by several different mechanisms such as oxygen excess, cation vacancy, and cation substitution. In YBa₂ Cu_3O_{6+x} (x = 0-1), oxygen atoms loss from the Cu-O chain alters the formal oxidation states of the chain copper atoms and consequently changes the hole density of the CuO_2 layer (8–10). In the Tl–O double rocksalt layer phases $Tl_2Ba_2Ca_{n-1}Cu_nO_{2n+4}$, the bottom of the Tl 6s-block bands lies below the Fermi level (11-13) so that the Tl 6sblock bands remove electrons from the CuO_2 layer x^2-y^2 bands; i.e., the Tl-O layers create holes in the CuO₂ layers. However, this is not the case for the TI-O single rock-salt layer phases $TlBa_2Ca_{n-1}Cu_nO_{2n+3}$ (11-13). Earlier band electronic structure studies on $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$, in which ideal rock-salt structures were postulated for the Bi-O layers, suggested that the bottom of the Bi 6p-block bands lies below the Fermi level, in disagreement with experiment (14-15). This incorrect conclusion is due to the use of ideal rock-salt structures for the Bi-O layers (16). The holes of the $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+2}$ phases are generated in part by excess oxygen atoms in the Bi-O layers (17, 18).

Several modifications of the Tl–O single rock-salt layer phases $TlBa_2Ca_{n-1}Cu_nO_{2n+3}$

0022-4596/91 \$3.00

have been made, which include ASr_2Ca_{n-1} $Cu_n O_{2n+3} [A = Tl_{0.5} Pb_{0.5} (19), n = 2, 3; A$ = $Tl_{0.5}Bi_{0.5}$ (20), n = 2), TlBaRCuO₅ (R =La, Nd) (12, 13), and TlSrRCa_{n-1}Cu_nO_{2n+3} (R = La, Nd) (21, 22). The $ASr_2Ca_{n-1}Cu_n$ O_{2n+3} phases are superconductors, like their analogs TlBa₂Ca_{n-1}Cu_nO_{2n+3} (19, 20). The</sub>formal oxidation states of the copper atoms expected for $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ are $Cu^{2.5+}$ $(Cu^{2+})_{n-1}$ (23, 24), slightly smaller than $Cu^{3+}(Cu^{2+})_{n-1}$ expected for the copper atoms of TlBa₂Ca_{n-1}Cu_nO_{2n+3}. The TlBaR CuO_5 phase is not a superconductor (12, 13), which is not surprising because the copper oxidation state is expected to be Cu²⁺. However, its isostructural phase TlSrRCuO₅ is a superconductor (21). On the other hand, TISrRCaCu₂O₇ (R = La, Nd), for which the copper oxidation state is predicted to be Cu^{2+} as in TlSrRCuO₅, is not a superconductor (22). In the present work, we examine the origin of these apparently puzzling observations.

The crystallographic *a*-parameters of TIBaLaCuO₅, TISrLaCuO₅, and TISrLaCa Cu_2O_7 are 3.849 (25), 3.761 (21), and 3.828 Å (22), respectively. These *a*-parameters are approximately twice the respective in-plane Cu-O bond lengths. Thus, the in-plane Cu-O bond of the superconducting phase TISrLaCuO₅ is considerably shorter than those of the nonsuperconducting phases TIBaLaCuO₅ and TISrLaCaCu₂O₇. The partially filled bands responsible for the superconductivity of the *p*-type cuprates are the CuO₂ layer x^2-y^2 bands, which are antibonding in nature and extend between the in-plane Cu and O atoms (5-7, 26). Therefore shortening of the in-plane Cu-O bond length should raise the $x^2 - y^2$ band in energy. When the in-plane Cu-O bond is significantly short as in TlSrRCuO₅ (R = La, Nd) the Fermi level could rise above the bottom of the Tl 6s-block bands, so that the Tl-O layer creates holes in the CuO_2 layer. We examined this possibility by performing extended Hückel tight-binding (EHTB) band

FIG. 1. Top and bottom of the x^2-y^2 band calculated for a flat CuO₂ layer as a function of the in-plane Cu–O bond length, where the Fermi level is for the half-filled case.

calculations (11, 14, 23, 27) on a flat CuO_2 layer and a model Tl–O single rock-salt layer. The atomic parameters employed in this work were taken from Ref. (11).

Figure 1 shows the top and the bottom of the $x^{2-}y^{2}$ band calculated for a flat CuO₂ layer as a function of the in-plane Cu-O bond distance, where the dashed line refers to the Fermi level for the copper oxidation state Cu^{2+} (i.e., half-filled band). Note that the $x^2 - y^2$ band is raised as much as $\sim 1.1 \text{ eV}$ when the in-plane Cu-O distance is shortened from 2.00 to 1.85 Å. To examine the Tl 6s-block bands of the superconducting phase TlSrLaCuO₅, we construct a model TI-O layer on the basis of its a-parameter (3.761 Å) (21). In general, the Tl–O layers of $Tl_m Ba_2 Ca_{n-1} Cu_n O_{2n+m+2}$ do not adopt an ideal rock salt structure because such a structure leads to a long in-plane TI-O distance of $a/\sqrt{2}$ (e.g., $3.761/\sqrt{2} = 2.659$ Å for TlSrLaCuO₅) (7, 11). The structures of the real TI-O layers deviate from an ideal rocksalt structure to produce short in-plane TI-O contacts, thereby leading to ladder. chain-, or island-like patterns (7, 11, 14). As shown in Fig. 2a, we adopt a chain-like

FIG. 2. (a) Chain-like pattern adopted for the Tl–O layer of TlSrLaCuO₅. (b) Arrangement of the out-ofplane oxygen atoms (O_{ax}) at each Tl atom above and below the Tl–O plane.

pattern for the TI-O layer of TISrLaCuO₅ with in-plane Tl-O of 2.30 Å. Then, two outof-plane oxygen atoms (O_{ax}) are attached to each Tl atom of Fig. 2a with the bond angle θ as defined in Fig. 2b, where the dotted line bisects the in-plane O-TI-O arrangement. Figure 3 shows how the bottom of the Tl 6sblock bands calculated for this TI-O single rock-salt layer varies as a function of the TI– O_{ax} distance and of the bond angle θ . The bottom of the Tl 6s-block bands is lowered in energy with increasing the TI-O_{ax} distance because this band is antibonding between the Tl and O atoms. It is also lowered when the bond angle θ increases from 90° due to the mixing of the Tl in-plane 6p-orbitals into the Tl 6s-orbital, which leads to an in-plane

FIG. 3. Bottom of the Tl 6s-block bands calculated for the model Tl–O layer representing the Tl–O layer of TlSrLaCuO₅ as a function of the Tl–O_{ax} distance for the cases of (a) $\theta = 90^{\circ}$ and (b) $\theta = 95^{\circ}$.

hybrid orbital directed away from the chain atoms (28).

It is clear from Figs. 1 and 3 that, for a system like TlSrRCuO₅ (R = La, Nd) for which the a-parameter is short, the Fermi level of the half-filled $x^2 - y^2$ band very likely lies above the bottom of the Tl 6s-block bands, so that the Tl-O layer creates holes in the CuO_2 layer. For a system with a longer a-parameter, the Fermi level of the halffilled $x^2 - y^2$ band would be lowered below the bottom of the Tl 6s-block bands, so that the TI-O layer does not generate holes in the CuO_2 layer. This situation should be applicable for TlSrLaCaCu₂O₇, because this compound is not a superconductor and because its *a*-parameter is greater than that of TlSrLaCuO₅. To summarize, the superconductivity of TlSrRCuO₅ is due most likely to the fact that its short in-plane Cu-O bond raises the $x^2 - y^2$ band high enough in energy to place the Fermi level above the bottom of the TI 6s-block bands. The difference of TISrRCuO₅ from TIBaRCuO₅ and TISrRCa Cu₂O₇ in superconducting property originates essentially from the fact that the inplane Cu-O bond length is strongly affected by the steric effects of the cations located at the 8- and/or 9-coordination sites adjacent to the CuO_2 layer (5–7). Solid solution studies of TlBaLaCuO₅ and TlSrLaCuO₅ reveal (29) that the *a*-parameter of the solid state $Tl(Ba_xSr_{1-x})LaCuO_5$ increases gradually with increasing x, and that the solid solution loses its superconductivity when x > 0.6. These results are consistent with our conclusions.

Acknowledgments

This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG05-86ER45259.

References

- 1. A. W. SLEIGHT, Science 242, 1519 (1988).
- A. W. Sleight, M. A. Subramanian, and C. C. Torardi, Mater. Res. Soc. Bull. XIV, 45 (1989).

- 3. C. N. R. RAO AND B. RAVEAU, Acc. Chem. Res. 22, 106 (1989).
- 4. R. J. CAVA, Science 247, 656 (1990).
- M.-H. WHANGBO AND C. C. TORARDI, Science 249, 1143 (1990).
- M.-H. WHANGBO, D. B. KANG, AND C. C. TORA-RDI, *Physica C* 158, 371 (1989).
- 7. M.-H. WHANGBO AND C. C. TORARDI, submitted for publication.
- 8. J. K. BURDETT AND G. V. KULKARNI, *Phys. Rev.* B 40, 8908 (1989).
- M.-H. WHANGBO, E. CANADELL, M. EVAIN, AND J. M. WILLIAMS, *Inorg. Chem.* 27, 2394 (1988).
- J. ZAANEN, A. T. PAXTON, O. JEPSEN, AND O. K. ANDERSEN, *Phys. Rev. Lett.* **60**, 2685 (1988).
- D. JUNG, M.-H. WHANGBO, N. HERRON, AND C. C. TORARDI, *Physica C* 160, 381 (1989).
- J. B. GOODENOUGH AND A. MANTHIRAM, J. Solid State Chem. 88, 115 (1990).
- 13. A. MANTHIRAM, M. PARANTHAMAN, AND J. B. GOODENOUGH, Physica C 171, 135 (1990).
- 14. T. J. WAGENER, Y. HU, Y. GAO, M. B. JOST, J. H. WEAVER, N. D. SPENCER, AND K. C. GORETTA, *Phys. Rev. B* 39, 2928 (1989).
- M. TANAKA, T. TAKAHASHI, H. KATAYAMA-YOS-HIDA, S. YAMAZAKI, M. FUJINAMI, Y. OKABE, W. MITSUTANI, M. ONO, AND K. KAJIMURA, *Nature* 339, 691 (1989).
- 16. J. REN, D. JUNG, M.-H. WHANGBO, J.-M. TARAS-CON, Y. LE PAGE, W. R. MCKINNON, AND C. C. TORARDI, *Physica C* 159, 151 (1989).

- C. C. TORARDI, J. B. PARISE, M. A. SUBRAMAN-IAN, T. GOPALAKRISHNAN, AND A. W. SLEIGHT, *Physica C* 157, 115 (1989).
- Y. LE PAGE, W. R. MCKINNON, J.-M. TARASCON, AND P. BARBOUX, *Phys. Rev. B* 40, 6810 (1989).
- M. A. SUBRAMANIAN, C. C. TORARDI, J. GOPALA-KRISHNAN, P. L. GAI, J. C. CALABRESE, T. R. ASKEW, R. B. FLIPPEN, AND A. W. SLEIGHT, *Science* 242, 249 (1988).
- 20. S. LI AND M. GREENBLATT, *Physica C* 157, 365 (1989).
- M. A. SUBRAMANIAN, Mater. Res. Bull. 25, 191 (1990).
- 22. M. A. SUBRAMANIAN, P. L. GAI, AND M.-H. WHANGBO, *Mater. Res. Bull.* 25, 899 (1990).
- D. B. KANG, D. JUNG, AND M.-H. WHANGBO, Inorg. Chem. 29, 257 (1990).
- 24. S. LI, M. GREENBLATT, Y. JEON, J. CHEN, G. LIANG, AND M. CROFT, *Physica C*, in press.
- 25. M. A. SUBRAMANIAN AND A. K. GANGULI, Mater. Res. Bull., in press.
- M.-H. WHANGBO, M. EVAIN, M. A. BENO, AND J. M. WILLIAMS, *Inorg. Chem.* 26, 1829 (1987).
- 27. M.-H. WHANGBO AND R. HOFFMAN, J. Am. Chem. Soc. 100, 6093 (1978). For details of EHTB calculations, see Ref. (11).
- T. A. ALBRIGHT, J. K. BURDETT, AND M.-H. WHANGBO, "Orbital Interactions in Chemistry," Wiley, New York, 1985.
- 29. M. A. SUBRAMANIAN AND A. K. GANGULI, to be published.